Referências
- [1] S. Alexandre Fonsêca and R. Fernando da Paz. llbayesireg: The L-Logistic Bayesian Regression, 2019. R package version 1.0.0.
- [2] D. M. Bates and D. G. Watts. Nonlinear regression analysis and its applications, volume 2. Wiley New York, 1988.
- [3] M. Betancourt and M. Girolami. Hamiltonian monte carlo for hierarchical models.Current trends in Bayesian methodology with applications, 79(30):2–4, 2015.
- [4] S. F. das Indústrias do Estado do Ceará. Índice fiec de inovação dos estados. https://arquivos.sfiec.org.br/nucleoeconomia/files/files/Outras%20publicacoes/
INDICE%20FIEC%20DE%20INOVACAO%20NOS%20ESTADOS%20SITE3.pdf, 2018. [Online; acessado 28-janeiro-2020]. - [5] P. Diggle, P. J. Diggle, P. Heagerty, K.-Y. Liang, P. J. Heagerty, S. Zeger, et al. Analysis
of longitudinal data. Oxford University Press, 2002. - [6] W. R. Gilks, N. G. Best, and K. Tan. Adaptive rejection metropolis sampling within gibbs sampling. Journal of the Royal Statistical Society: Series C (Applied Statistics), 44(4):455–472, 1995.
- [7] W. K. Hastings. Monte carlo sampling methods using markov chains and their applications. 1970.
- [8] D. C. Knill and W. Richards. Perception as Bayesian inference. Cambridge University Press, 1996.
- [9] N. M. Laird and J. H. Ware. Random-effects models for longitudinal data. Biometrics, pages 963–974, 1982.
- [10] M. J. Lindstrom and D. M. Bates. Nonlinear mixed effects models for repeated measures data. Biometrics, pages 673–687, 1990.
- [11] Q. Long, J. Lin, and Z. Sun. Modeling and distributed simulation of supply chain with a multi-agent platform. The International Journal of Advanced Manufacturing Technology, 55(9-12):1241–1252, 2011.
- [12] B. Marr. What is industry 4.0? here’s a super easy explanation for anyone. https://www.forbes.com/sites/bernardmarr/2018/09/02/what-is-industry-4-0-heres-a-super-easy-explanation-for-anyone/#12d60a5f9788, 2018. [Online; acessado 28-janeiro-2020].
- [13] J. McCarthy. Artificial intelligence, logic and formalizing common sense. In Philosophical logic and artificial intelligence, pages 161–190. Springer, 1989.
- [14] J. A. Nelder and R. W. Wedderburn. Generalized linear models. Journal of the Royal Statistical Society: Series A (General), 135(3):370–384, 1972.
- [15] J. Neter, M. H. Kutner, C. J. Nachtsheim, and W. Wasserman. Applied linear statistical models. 1996.
- [16] R. Paz, N. Balakrishnan, and J. Bazan. L-logistic regression models: Prior sensitivity analysis, robustness to outliers and applications. Brazilian Journal of Probability and Statistics, 33, 2019.
- [17] I. e. P. Publicação conjunta: OMPI, Universidade Cornell. Índice global de inovação 2019. https://www.wipo.int/export/sites/www/pressroom/pt/documents/pr_2019_834.pdf, 2019. [Online; acessado 28-janeiro-2020].
- [18] S. J. Russell and P. Norvig. Artificial intelligence: a modern approach. Prentice Hall, 2016.
- [19] A. S. Tanenbaum and M. Van Steen. Distributed systems: principles and paradigms.Prentice-Hall, 2007.
- [20] I. B. A. TURING. Computing machinery and intelligence-am turing. Mind, 59(236):433, 1950.
- [21] M. Wang, J. Liu, H. Wang, W. K. Cheung, and X. Xie. On-demand e-supply chain integration: A multi-agent constraint-based approach. Expert Systems with applications, 34(4):2683–2692, 2008.
- [22] M. Wollschlaeger, T. Sauter, and J. Jasperneite. The future of industrial communication: Automation networks in the era of the internet of things and industry 4.0. IEEE industrial electronics magazine, 11(1):17–27, 2017.